PMC ADC/DAC

Peripheral Component Interconnect Mezzanine Card

(Analog to Digital and Digital to Analog Convertor)

Key Features

- Two Independent 16-bit 500KSPS A/D converters
- ADC input range –
- Two Independent 16-bit 2MSPS D/A converters
- DAC output range-
- 100KHz analog input bandwidth
- Support for under sampling applications
- Xilinx SPARTAN 6 FPGA
- SRAM/SDRAM memory
- Sample clocks: external or oncard PLL
- Software support- Linux/ VxWorks

The ADC/DAC card provides two independent ADC channels and two independent DAC outputs. It integrates two 16-bit ADC channels at 500 KSPS with 100 KHz analog input bandwidth and two 2MSPS 16-bit DAC's with a FPGA for user-code, ample memory for DMA engines and flexible clocks/triggers on a PMC mezzanine format. PCI accessible ADC/DAC buffers.

Each ADC and DAC has independent 16-bit data path to the FPGA. Each can simultaneously read from ADC or write to DAC. The architecture features a high performance front-end tightly coupled to a FPGA. The FPGA communicates with the host processor through a dedicated PCI controller chip, leaving the majority of logic uncommitted. API's for accessing I/O, SRAM/SDRAM, and local bus are provided.

The ADC sample clock is supplied by an on-board frequency synthesizer or an external source. The frequency synthesizer can be phase locked to the local crystal oscillator (TCXO) or an external reference can be used to achieve system-wide phase coherence.

The FPGA can be connected to 16-bit QDR SRAM for high speed local data storage. The QDR SRAM provides separate read and write ports to maximize data transfer into and out of memory. This memory can also be used as a high-speed snapshot recorder to store segments of data without interruption from PCI bus traffic

A DMA FPGA core is provided to manage data transfers between the ADC buffer to host memory and host memory to DAC buffer. The DMA engine allows the receiver to automatically initiate a PCI burst transaction when a predetermined number of samples are available. An interrupt is generated by the Channel Adapter when the specified number of data blocks has been written. DMA is interrupt driven.

Specifications - (PMC ADC/DAC)

Specifications

Analog Input Characteristics

PCI IO Bridge:	PLX PCI9056	Channel Count	2 Channels	
FPGA:	Xilinx SPARTAN 3S	Channel Config	Differential/Single ended	
ADC:	2 Independent Channels	Acquisition mode	Independent	
	100 kHz Bandwidth	Resolution	16 Bits	
	Sampling Rate up to 500 kSPS	Data Format	2's compliment Dipary	
	16 bit Resolution	Data Format		
DAC :	2 Independent Channels	Power Consumption	85 (Typ)(mW)	
	100 kHz Bandwidth	SINAD (dB)	83	
	Sampling Rate up to 2 MSPS	SFDR (dB)	94	
	16 bit Resolution	Input Voltage	+/-2.5V, 50 Ohms bipolar	
PCI Bus :	PCI 32-bit bus	CMRR	70 dB	
	33 MHz / 66 MHz			
	+3.3V			
Front panel :	ADC 2 Channel SMA Connector	Analog Output Cha	t Characteristics	
	DAC 2 Channel SMA Connector	Channel Count	2 Channels	
	Clock SMA connector 3.3V sine wave	Channel Config	Single Ended	
JTAG :	FPGA	Output Mode	Independent	
Rear IO :	IO terminated through PMC P4	Resolution	16 Bits	
	connector			
Cooling :	Air cooled	Data Format	2's compliment Binary	
Dimension :	149mm x 74mm x 1.6mm	Output Voltage	±2.5V,50 ohms bipolar	
Operating Temperature:	Industrial (-10°C to ±55°C)			
voitage :				
Power:	5 watts on Maximum Conditions			

ROHS

ISO-9001:2015 Registered

Software :

Cornet Technology, Inc. • 6800 Versar Center, Springfield, VA 22151 703.658.3400 • 703.658.3440 fax • www.cornet.com

© 2019 Cornet Technology, Inc. All rights reserved. In the interest of continuous improvement, Cornet Technology, Inc. reserves the right to change specifications without prior notice.

VxWorks-6.3

Product is Subject to U.S. Export Laws